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G E N E R A L I Z A T I O N  O F  C H A R A C T E R I S T I C S  O F  

C A S C A D E  E L E C T R I C  A R C S  I N  V A R I O U S  G A S E S  

A. F. Bublievskii UDC 537.523.5 " 

Generalization o f  differential volt-ampere and other characteristics of  cascade electric arcs in air, nitrogen, 

argon, helium, and  hydrogen is carried out  for currents o f  0 . 4 - 3 0 0  A and channel radii o f  1 - 2 0  ram. 

Modern methods of evaluation of generalized dependences for electric arcs are based on the statistical 
processing of numerous experimental data, rather than on solving the system of differential equations known for 
this system with corresponding boundary conditions. The equations are at best used only to elucidate criteria and 

similarity numbers, whereas empirical forms of generalized dependences are usually set up a priori. This approach 
is realized within the framework of physical modeling, when the scale changes but the nature of the phenomenon 
is preserved. 

The use of methods of mathematical modeling for which the conservation of the nature of the phenomenon 

is not necessary but identity between the equations of the model and phenomenon involves certain difficulties. One 

method of overcoming the difficulties is proposed in [1 I. The technique of obtaining generalized solutions for electric 
arcs by analytical methods is based on a power approximation of the electric conductivity cr as a function of the 
increment in the thermal conductivity potential AS, with different exponents emerging upon separation of variables 

for longitudinal and transverse components of the increment. 
Dimensionless dependences for cascade (weakly ventilated, flowless) electric arcs obtained by this method 

are presented in [2 ]. They can be presented as follows: 

~. = exp [ -  A~. K s 0PPo) -# ] ,  (i) 

AS'---I = AS (attP~ J0 (2.47/7.) ,  

ASII -~ K S In (7 /7 . ) / I n  ( 1 / r . ) ,  

(2) 

(3) 

n e  = Ae L -2 (WPo) , (4) 

rlq = Aq (WPo)/~ . (5) 

By multiplying (5) by Po, we obtain one more, in addition to (4) and (5) along with (1), form of repre- 

sentation of generalized energy characteristics of the arc 

I-[ N = A N (1 q- 0.17KQ 7 2 ) (qJPo) fl . (6) 

The dimensionless quantity of the specific energy release is used in this case as a generalized function. 
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TABLE 1. Values of Coefficients and Exponents in Formulas (1), (2), (4)-(6), and (8) 

Parameters 
Gas 

"47. AS A E =  AN n E Aq a fl ~, 

Air 

Nitrogen 

Argon 

Helium 

Hydrogen 

2.049 

2.894 

4.81 

1.505 

2.212 

0.39 

0.276 

0.166 

0.531 

0.361 

3.06 

2.167 

1.305 

4.164 

2.828 

9.19 

4.689 

1.706 

17.66 

8.023 

0.488 

0.345 

0.208 

0.664 

0.452 

0.56 

0.453 

0.35 

0.73 

0.54 

0.44 

0.547 

0.65 

0.27 

0.46 

-0.111 

0.0947 

0.299 

-0.467 

- 0.081 
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Fig. 1. Differential generalized VACs of arc in coordinates ~ --f(Po): 1-5) 

calculation by formulas (1) and (4) for air, hydrogen, nitrogen, argon, and 

helium, respectively; 6) experiment for air (R = 2.5 ram); 7, 8) experiment 

for hydrogen (7) R = 1 mm; 8) 2.5 mm); dots, experiment for nitrogen (R -- 

1 mm Ca), 1.5 (b), 2 (c), 2.5 (d), and 3 mm (e)), argon (R - 2 mm if), 2.5 

(g), 3 (h), and 4 (i)), and helium (R -- 5 mm (j)). P = 0.1 MPa, T O -- 10 4 K. 

Another form of the expression for H N can be obtained from (6) and (1) if the axial temperature of the 

arc which is determined from (2) at 7 = 0 is taken as the basis temperature. Finally, we arrive at 

(7) FIN00 = 7.84 [1 + 0.17KQ0 o exp ( -  1.6Kso0) 1. 

In (7), the Po number is excluded from independent generalized variables. This expression can be used 
conveniently when the temperature on the arc's axis is known. 

In addition to expressions for dimensionless quantities such as the radius of the arc column (1), distribution 

of the increase in the thermal conductivity potential within (2) and outside (3) the column, specific resistance (4), 

conductive thermal flux (5), and arc power per unit length (6), (7), one can also obtain an equation for the 
dimensionless electric field strength. Squaring (4) and multiplying by q~Po/10.6ka, we obtain 

(8) A' U (1 + o.17% r-. ) ( eo) . 

Due to a difference in exponents n a for the longitudinal component AS in the approximation of a(AS) and 

in the coefficient ka in Eqs. (4), (2), (4)-(6), (8), different exponents and numerical coefficients wilt take place for 

different gases. Values of na and/ca for air, nitrogen, argon, and helium are presented in [2 ]. Data on thermo- 

and electrophysical properties necessary for their evaluation where taken from references cited in the same article. 

582 



2.10"~ 

2"10 ~ 5 l 

10 ~ 

510"]- "4 .[['~ '2 . - b  * - e  ~ - h  
I IT �9 , , - c  o - t "  , , - t  

2.10-~ ~ . - a , - a - § -.t  
f0 -4 /0 3 /0 -2 /01 102 10J Po 

Fig. 2. Comparison of theoretical generalizerd differential  VAC of arc (solid 

curve) with exper iment  (curves 1-5, dots) with (A) and without (B) taking 

into account the radiat ion number  in coordinates F = f ( P o ) .  Air: 1) R = 2.5; 

hydrogen:  R -- 1 mm (2), 2.5 (3), 9.25 (4), and 20 mm (5); nitrogen: R -- 1 

mm (a), 1.5 (b), 2 (c), 2.5 (d), and 3 mm (e); argon: R = 2 mm (f), 2.5 (g), 

3 (h),  and 4 mm (i); helium R = 5 mm (j). P = 0.1 MPa, T O = 104 K. 

A bibliography on properites of hydrogen and corresponding values of na and ka are presented  in [3 ]. Values of 
s 

numerical  coefficients A-i., AS ,  A E  = AN,  Aq, and AE,  and exponents  a ,  r ,  and ? for these gases are presented in 

Table  1. 

The  form of the analytical  expression for the generalized differential  volt-ampere characterist ic  (VAC) (4) 

of the arc with allowance for (1) does not permit  a representat ion in the coordinates HE = f ( P o )  by a single curve 

not only for different  gases, but even for a single gas. For a single gas, this is impossible due to fibering over the 

KQ number ,  and  for different  gases, even at KQ = 0 this is impossible due to the above-ment ioned difference in 

no. The  situation will differ,  however, only for a single gas if one uses an approach used in empirical generalization. 

To do this,  one  should  in t roduce  ins tead  of H e  a new genera l ized  function that  includes i n d ep enden t  and  

in termediate  general ized variables over which the curves are fibered. The  function ~ can play this role. The  

graphical presentat ion of quantities being generalized in the logarithmic coordinates ~ = f (Po)  yields a situation 

where each gas is character ized by its own line. This is illustrated by Fig. 1, where experimental  data  are taken 

from references cited in [2, 3 ]. It should be noted that it is impossible to isolate and show in the figure the effect 

of the Po number  on the generalized VAC in the pure form, since 7,, which depends on Po itself, enters  into ~ .  

An illustration of the reduction of the set of curves to a single curve for different gases is possible in the 

three cases: in the coordinates ~ = f (Po)  at no = idem, in the e x p e r i m e n t - t h e o r y  coordinates for the quanti ty FIE 

[2 ], and in the coordinates F = f (Po) .  

Figure 2 presents  a comparison of a theoretical generalized differential  VAC of an arc for all the gases (air, 

nitrogen, argon, helium, and hydrogen)  with experimental  data presented in Fig. l ,  in the coordinates F- - - f (Po)  

with and without allowance for radiation. The  range of variation of the Po number  in experiments  exceeded eight 

orders of magnitude,  and over six orders  of magnitude for the HE number.  It is evident that the neglect of radiat ion 

(KQ = 0) leads to a maximum discrepancy of 54 %. Fibering of experimental  points also takes place over the channel  

diameter ,  especially in argon, due to differing thicknesses of the emitting layer. Introduction of the KQ number  

leads to a closer clustering of experimental  points near  the experimental  curve, which results in the fact that  the 

deviation between them does not exceed _+29%. An exception is the experimental  data for the argon arc in the 

channel  with R = 10.5 mm, which are not presented in the figure. The  large scatter ( - 2 3 0 % )  is explained by the 

neglect of reabsorpt ion of radiation. 
A similar comparison for the axial temperature  in the argon arc according to the data from [4 ] is presented 

in Fig. 3. In this case the neglect of radiation leads to a maximum discrepancy of 41% between the theory  and 
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Fig. 3. Comparison of theoretical (curve) and experimental data [4 ] (dots) 

with (a) and without (b) taking into account the radiation number: R = 2 mm 

(1), 3 (2), and 4 mm (3). I = 20-200 A, P = 0.1 MPa, ~o~), kK. 

TABLE 2. Comparison of Calculation by Expressions (2) and (7) with Experiment [5 ] for Nitrogen 

g ,  m 1, A E .  10 -3, W/m TeO~ �9 lO -3, K T~"  FI}O00 

1.5- 10 -a  

2.5.10 -3 

25 

36 

48 

58 

72 

82 

97 

54 

60 

75 

102 

107 

130 

4 

3.6 

3.3 

3.2 

3.2 

3.3 

3.4 

2.1 

2.05 

2.05 

2.1 

2.1 

2.3 

11.5 

12.3 

13.5 

13.8 

14.5 

15 

15.3 

12.2 

12.4 

12.6 

13.3 

13.5 

13.8 

12.6 

14.1 

15.1 

15.8 

16.5 

16.9 

17.2 

13.2 

10 -3, K FIfo o 

12 

11.9 

12.5 

13.8 

14.9 

15.9 

17.4 

11.8 

13.6 

14.3 

15.5 

16 

16.3 

12.3 

14.7 

17.7 

20.4 

22.2 

9.3 

9.6 

9.9 

10 

10.3 

10.4 

10.51 

12.1 

12.3 

12.8 

13.7 

14 

14.4 

experiment (Fig. 3a). The use of the radiation number KQ and calculation by complete formulas (1) and (2) reduces 
the error in the determination of the axial temperature to 13% (Fig. 3b). 

An experimental check of formula (7), where the temperature on the arc's axis is used as a characteristic 

one, deserves special attention. In the absence of radiation, it transforms into a very simple law 

HNO o = 7.84. (9) 

However, it cannot be compared with an experiment, e.g., in a hydrogen arc at low currents and small channel 
radii, when radiation can be neglected, since we could not find measurements of the field strength and temperature 

under identical conditions. Therefore, relationship (7) was checked out parallel with (2) for axial temperature 

values against experimental data [5 ] for radiating nitrogen. Calculations are presented in Table 2. It is evident 

that the maximum discrepancy between the calculation and experiment equals 18.5% for the temperature on the 

axis and 39.6% for the number FINo0. If one could use the experimental data of [5 ] for the thermal conductivity 
coefficient, whose value within the region (13-15).  103 K exceeds by a factor of 1.3-1.5 the data used in the 

calculation, the error in evaluation of FIN00 would decrease, according to our estimates, to - 3 0 % .  However, this 

cannot be done, since 2 below 13- 103 K were not evaluated in [5 I. 

Considering the wide variety of gases investigated (air, N2, Ar, He, and H2) and the range of variation of 

parameters (I = 0.4-300 A, R --- 1-20  mm), one can say that the dimensionless formulas obtained by generalized 

mathematical modeling for cascade electric arcs describe well results of experimental investigations of differential 
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volt-ampere and other characteristics of these arcs obtained by various authors. The possibility of presentation of 
results of generalization by a single curve depends on the choice of the form of generalized coordinates. 

N O T A T I O N  

or, electric conductivity; 2, thermal conductivity; T, temperature; P, pressure; E, electric field strength; I, 
electric current strength; r, running radius; R, channel radius; Q, bulk radiation density; q, thermal heat flux; S -- 
T 
f 2 d T ,  thermal conductivity potential; ~ -- r /R;  AS = S -  S,; AS = AS/ASo;  Jo, Bessel's function; Po -- 
0 

I2/R2ooASo, the Pomerantsev number; KQ -- QoR2/ASo, radiation number; KS = - A S I  /ASo ,  parametric number; 

l iE = ER2~ l i e  = E2R2crO/ASo' I-IN = EI /ASo ,  and FIq = q l R / A S o ,  similarity numbers; no, a = n~/(no + 1), fl 

= 1/(no + 1), and ~, = (1 - na)/(1 + na), exponents; ko, As  = (10.6ka) -#, A-i. ~ 0 . 8 / As ,  AE = AN -~ 7.84As, A E 

61.5tl 2, and Aq -~ 1.25A S, coefficients; q/= 1/72(1 + 0.17KQ7.2), and tD--A~172q Ja, and F = A ~172(qJPo) a, generalized 

functions. Subscripts and superscripts: *, boundary of conducting zone; 0, characteristic value; 1, value on the wall, 
00, axial value; I, II, conducting and nonconducting zones, respectively; th, theory; ex, experiment. 
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